The effects of dilution and mixed layer depth on deliberate ocean iron fertilization: 1-D simulations of the southern ocean iron experiment (SOFeX)
نویسندگان
چکیده
To better understand the role of iron in driving marine ecosystems, the Southern Ocean Iron Experiment (SOFeX) fertilized two surface water patches with iron north and south of the Antarctic Polar Front Zone (APFZ). Using 1-D coupled biological–physical simulations, we examine the biogeochemical dynamics that occurred both inside and outside of the fertilized patches during and shortly after the SOFeX field campaign. We focus, in particular, on three main issues governing the biological response to deliberate iron fertilization: the interaction among phytoplankton, light, macronutrient and iron limitation; dilution and lateral mixing between the fertilized patch and external, unfertilized waters; and the effect of varying mixed layer depth on the light field. At the patch south of the APFZ, sensitivity simulations with no dilution results in the maximum bloom magnitude, whereas dilution with external water extends the development of the north patch bloom by relieving silicon limitation. In model sensitivity studies for both sites, maximum chlorophyll concentration and dissolved inorganic carbon depletion inside the fertilized patches are inversely related to mixed layer depth, similar to the patterns observed across a number of iron fertilization field experiments. Our results suggest that Southern Ocean phytoplankton blooms resulting from natural or deliberate iron fertilization will tend to become iron-light co-limited unless the mixed layer depth is quite shallow. © 2007 Elsevier B.V. All rights reserved.
منابع مشابه
Feasibility of ocean fertilization and its impact on future atmospheric CO2 levels
[1] Iron fertilization of macronutrient-rich but biologically unproductive ocean waters has been proposed for sequestering anthropogenic carbon dioxide (CO2). The first carbon export measurements in the Southern Ocean (SO) during the recent SO-Iron Experiment (SOFeX) yielded 900 t C exported per 1.26 t Fe added. This allows the first realistic, data-based feasibility assessment of large-scale i...
متن کاملRemote sensing observations of ocean physical and biological properties in the region of the Southern Ocean Iron Experiment (SOFeX)
[1] Satellite remote sensing estimates of surface chlorophyll, temperature, wind speed, and sea ice cover are examined in the region of the Southern Ocean Iron Experiment (SOFeX). Our objectives are to place SOFeX into a regional context and highlight regional mesoscale spatial and monthly temporal variability. SOFeX fertilized two patches with iron, one south of the Antarctic Polar Front (PF) ...
متن کاملProgressive decoupling between phytoplankton growth and microzooplankton grazing during an iron-induced phytoplankton bloom in the Southern Ocean (EIFEX)
Dilution experiments were performed to quantify growth and mortality rates of phytoplankton groups (as defined by pigment markers) for 5 wk in an iron-induced phytoplankton bloom during the European Iron Fertilization Experiment (EIFEX) conducted in the Southern Ocean. Rates could be reliably measured for the 2 main groups, diatoms and prymnesiophytes. Mean phytoplankton intrinsic growth rates ...
متن کاملToxic diatoms and domoic acid in natural and iron enriched waters of the oceanic Pacific.
Near-surface waters ranging from the Pacific subarctic (58°N) to the Southern Ocean (66°S) contain the neurotoxin domoic acid (DA), associated with the diatom Pseudo-nitzschia. Of the 35 stations sampled, including ones from historic iron fertilization experiments (SOFeX, IronEx II), we found Pseudo-nitzschia at 34 stations and DA measurable at 14 of the 26 stations analyzed for DA. Toxin range...
متن کاملBicarbonate uptake by Southern Ocean phytoplankton
[1] Marine phytoplankton have the potential to significantly buffer future increases in atmospheric carbon dioxide levels. However, in order for CO2 fertilization to have an effect on carbon sequestration to the deep ocean, the increase in dissolved CO2 must stimulate primary productivity; that is, marine phototrophs must be CO2 limited [Riebesell et al., 1993]. Estimation of the extent of bica...
متن کامل